PANI : an interactive data-driven tool for target prioritization in signaling networks
Biological network analysis often aims at the target identification problem, which is to predict which molecule to inhibit (or activate) for a disease treatment to achieve optimum efficacy and safety. A related goal, arising from the increasing availability of high-throughput screening (HTS), is to...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/107227 http://hdl.handle.net/10220/16672 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Biological network analysis often aims at the target identification problem, which is to predict which molecule to inhibit (or activate) for a disease treatment to achieve optimum efficacy and safety. A related goal, arising from the increasing availability of high-throughput screening (HTS), is to suggest many molecules as potential targets. The target prioritization problem is to predict a subset of molecules in a given disease-associated network which is likely to include successful drug targets. Sensitivity analysis prioritizes targets in a dynamic network model according to principled criteria, but fails to penalize off-target effects, and does not scale for large networks. In this demonstration, we present PANI(Putative TArget Nodes PrIoritization), a novel interactive system that addresses these limitations. It prunes and ranks the possible target nodes by exploiting concentration-time profiles and network structure (topological) information and visually display them in the context of the signaling network. Through the interactive user interface, we demonstrate various innovative features of PANI that enhance users' understanding of the prioritized nodes. |
---|