Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation

Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Dependi...

Full description

Saved in:
Bibliographic Details
Main Authors: Yeo, Tsin W., Lampah, Daniel A., Kenangalem, Enny, Tjitra, Emiliana, Price, Ric N., Weinberg, J. Brice, Hyland, Keith, Granger, Donald L., Anstey, Nicholas M.
Other Authors: Kim, Kami
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/107283
http://hdl.handle.net/10220/25446
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-107283
record_format dspace
spelling sg-ntu-dr.10356-1072832022-02-16T16:29:55Z Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation Yeo, Tsin W. Lampah, Daniel A. Kenangalem, Enny Tjitra, Emiliana Price, Ric N. Weinberg, J. Brice Hyland, Keith Granger, Donald L. Anstey, Nicholas M. Kim, Kami Lee Kong Chian School of Medicine (LKCMedicine) DRNTU::Science::Biological sciences::Microbiology::Bacteria Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Depending on BH4 availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH4/BH2 ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH4 deficiency. The primary three biopterin metabolites (BH4, BH2 and B0 [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH4 was decreased (median 0.16 ¼mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH2 was increased in SM (median 0.91 ¼mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH4/BH2 ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH4/BH2 ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH2 in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria. Published version 2015-04-22T07:58:46Z 2019-12-06T22:28:02Z 2015-04-22T07:58:46Z 2019-12-06T22:28:02Z 2015 2015 Journal Article Yeo, T. W., Lampah, D. A., Kenangalem, E., Tjitra, E., Price, R. N., Weinberg, J. B., et al. (2015). Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation. PLOS pathogens, 11(3), e1004667-. 1553-7374 https://hdl.handle.net/10356/107283 http://hdl.handle.net/10220/25446 10.1371/journal.ppat.1004667 25764397 en PLOS pathogens This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 13 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences::Microbiology::Bacteria
spellingShingle DRNTU::Science::Biological sciences::Microbiology::Bacteria
Yeo, Tsin W.
Lampah, Daniel A.
Kenangalem, Enny
Tjitra, Emiliana
Price, Ric N.
Weinberg, J. Brice
Hyland, Keith
Granger, Donald L.
Anstey, Nicholas M.
Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
description Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Depending on BH4 availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH4/BH2 ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH4 deficiency. The primary three biopterin metabolites (BH4, BH2 and B0 [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH4 was decreased (median 0.16 ¼mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH2 was increased in SM (median 0.91 ¼mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH4/BH2 ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH4/BH2 ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH2 in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
author2 Kim, Kami
author_facet Kim, Kami
Yeo, Tsin W.
Lampah, Daniel A.
Kenangalem, Enny
Tjitra, Emiliana
Price, Ric N.
Weinberg, J. Brice
Hyland, Keith
Granger, Donald L.
Anstey, Nicholas M.
format Article
author Yeo, Tsin W.
Lampah, Daniel A.
Kenangalem, Enny
Tjitra, Emiliana
Price, Ric N.
Weinberg, J. Brice
Hyland, Keith
Granger, Donald L.
Anstey, Nicholas M.
author_sort Yeo, Tsin W.
title Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
title_short Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
title_full Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
title_fullStr Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
title_full_unstemmed Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
title_sort impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria : association with disease severity, impaired microvascular function and increased endothelial activation
publishDate 2015
url https://hdl.handle.net/10356/107283
http://hdl.handle.net/10220/25446
_version_ 1725985745637736448