On efficient solution of large-size wire-grid structures in a complex environment

In this study, four numerical techniques (1) wavelet transform method (WTM) (2) modified fast multipole method (MFMM) (3) adaptive segmentation method (ASM) (4) weak coupling suppression method (WCSM) for the efficient solution of large-size electromagnetic (EM) problems have been studied. These tec...

全面介紹

Saved in:
書目詳細資料
主要作者: Lee, Yee Hui.
其他作者: Lu, Yilong
格式: Theses and Dissertations
語言:English
出版: 2008
主題:
在線閱讀:http://hdl.handle.net/10356/13166
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this study, four numerical techniques (1) wavelet transform method (WTM) (2) modified fast multipole method (MFMM) (3) adaptive segmentation method (ASM) (4) weak coupling suppression method (WCSM) for the efficient solution of large-size electromagnetic (EM) problems have been studied. These techniques have been implemented onto a popular simulation software - Numerical Electro-magnetic Code (NEC), which uses the method of moment (MoM) for the solution of EM problems in a complex environment. In the MoM, solving the impedance ma-trix equation becomes extremely computational time and memory intensive when the problem is large. Therefore, the main purpose of using these techniques is to break the bottle-neck existing in the MoM by either reducing the density or the order of the impedance matrix. In order to reduce the density of the impedance matrix, WTM and WCSM have been studied. Whereas MFMM and ASM are proposed and developed to reduce the order of the impedance matrix.