Automated extraction of diagnostic knowledge
With the advent in technology, manufacturing systems have become more complex. It may not be easy for an engineer to acquire sufficient knowledge in a short time in order to carry out manufacturing diagnosis efficiently. As a result, the ability to automatically extract diagnostic rules from the raw...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/13476 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | With the advent in technology, manufacturing systems have become more complex. It may not be easy for an engineer to acquire sufficient knowledge in a short time in order to carry out manufacturing diagnosis efficiently. As a result, the ability to automatically extract diagnostic rules from the raw knowledge or data gleaned from a manufacturing system has become an important area in artificial intelligence research. In reality, the raw knowledge gleaned from a manufacturing system may contain uncertainty, that is, it may be imprecise or incomplete. |
---|