Visible light photoredox mediated C-C bond formation under metal-free condition

Over the last decade, visible-light photoredox catalysis is rising as an important route for new chemical bond formation. The source of activation is visible-light which helps the reaction to occur in ambient temperature. In addition, due to the ability to tune the redox potential of other molecule,...

Full description

Saved in:
Bibliographic Details
Main Author: Das, Mrinmoy
Other Authors: Liu Xuewei
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137194
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-137194
record_format dspace
spelling sg-ntu-dr.10356-1371942023-02-28T23:34:43Z Visible light photoredox mediated C-C bond formation under metal-free condition Das, Mrinmoy Liu Xuewei School of Physical and Mathematical Sciences xuewei@ntu.edu.sg Science::Chemistry::Organic chemistry Over the last decade, visible-light photoredox catalysis is rising as an important route for new chemical bond formation. The source of activation is visible-light which helps the reaction to occur in ambient temperature. In addition, due to the ability to tune the redox potential of other molecule, photoredox catalyst enables several challenging transformations easier. As a consequence, photoredox catalysts can facilitate many unfavourable electron transfer processes by diminishing the earlier reports and proceed the reaction through different pathways. Because of its usefulness towards organic synthesis the reports using this strategy is increasing gradually. Therefore, I intended to develop novel C-H activation strategies during my doctoral research work by employing organo-photoredox catalysis. The first chapter of this thesis describes photoredox catalysis, photophysical properties and application towards organic chemistry. Subsequently, in the second chapter we have developed a metal-free C-C bond forming method which involves C-H activation of phosphonium ylides, followed by the addition of electron rich olefin. This work describes a novel strategy to generate carbyne equivalents from phosphonium ylides under photoredox condition. Finally, in the last chapter we have successfully introduced photocatalytic metal free method for the intermolecular radical-radical cross coupling involving ketyl radical to produce complex tertiary alcohols. Doctor of Philosophy 2020-03-05T09:04:05Z 2020-03-05T09:04:05Z 2019 Thesis-Doctor of Philosophy Das, M. (2019). Visible light photoredox mediated C-C bond formation under metal-free condition. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/137194 10.32657/10356/137194 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Chemistry::Organic chemistry
spellingShingle Science::Chemistry::Organic chemistry
Das, Mrinmoy
Visible light photoredox mediated C-C bond formation under metal-free condition
description Over the last decade, visible-light photoredox catalysis is rising as an important route for new chemical bond formation. The source of activation is visible-light which helps the reaction to occur in ambient temperature. In addition, due to the ability to tune the redox potential of other molecule, photoredox catalyst enables several challenging transformations easier. As a consequence, photoredox catalysts can facilitate many unfavourable electron transfer processes by diminishing the earlier reports and proceed the reaction through different pathways. Because of its usefulness towards organic synthesis the reports using this strategy is increasing gradually. Therefore, I intended to develop novel C-H activation strategies during my doctoral research work by employing organo-photoredox catalysis. The first chapter of this thesis describes photoredox catalysis, photophysical properties and application towards organic chemistry. Subsequently, in the second chapter we have developed a metal-free C-C bond forming method which involves C-H activation of phosphonium ylides, followed by the addition of electron rich olefin. This work describes a novel strategy to generate carbyne equivalents from phosphonium ylides under photoredox condition. Finally, in the last chapter we have successfully introduced photocatalytic metal free method for the intermolecular radical-radical cross coupling involving ketyl radical to produce complex tertiary alcohols.
author2 Liu Xuewei
author_facet Liu Xuewei
Das, Mrinmoy
format Thesis-Doctor of Philosophy
author Das, Mrinmoy
author_sort Das, Mrinmoy
title Visible light photoredox mediated C-C bond formation under metal-free condition
title_short Visible light photoredox mediated C-C bond formation under metal-free condition
title_full Visible light photoredox mediated C-C bond formation under metal-free condition
title_fullStr Visible light photoredox mediated C-C bond formation under metal-free condition
title_full_unstemmed Visible light photoredox mediated C-C bond formation under metal-free condition
title_sort visible light photoredox mediated c-c bond formation under metal-free condition
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/137194
_version_ 1759853589248868352