Shift vector as the geometric origin of beam shifts

Goos-Hanchen (GH) and Imbert-Fedorov (IF) shifts are lateral and transverse displacements of a wavepacket reflecting off a surface. A dramatic real-space manifestation of wavepacket phases, they have traditionally been analyzed in a model dependent fashion. Here we argue that GH and IF shifts adm...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Shi, Li-Kun, Song, Justin Chien Wen
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/138043
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Goos-Hanchen (GH) and Imbert-Fedorov (IF) shifts are lateral and transverse displacements of a wavepacket reflecting off a surface. A dramatic real-space manifestation of wavepacket phases, they have traditionally been analyzed in a model dependent fashion. Here we argue that GH and IF shifts admit a general geometrical description and arise from a gauge invariant geometric phase. In particular, we show GH/IF shifts can be naturally captured by a shift vector, analogous to the shift vector from shift currents in the bulk photovoltaic effect. Employing Wilson loops to visualize the scattering processes contributing to the shift vector, we separate the shift into an intrinsic (depends solely on the system bulk) and an extrinsic part. This enables to establish a clear model-independent link between symmetry and the presence/absence of intrinsic and extrinsic GH/IF shifts.