Shift vector as the geometric origin of beam shifts
Goos-Hanchen (GH) and Imbert-Fedorov (IF) shifts are lateral and transverse displacements of a wavepacket reflecting off a surface. A dramatic real-space manifestation of wavepacket phases, they have traditionally been analyzed in a model dependent fashion. Here we argue that GH and IF shifts adm...
Saved in:
Main Authors: | Shi, Li-Kun, Song, Justin Chien Wen |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/138043 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Plasmon geometric phase and plasmon hall shift
由: Shi, Li-kun, et al.
出版: (2018) -
Polariton-drag enabled quantum geometric photocurrents in high symmetry materials
由: Xiong, Ying, et al.
出版: (2023) -
Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals
由: Shi, Li-kun, et al.
出版: (2021) -
Calculation of the biexciton shift in nanocrystals of inorganic perovskites
由: Nguyen, Thi Phuc Tan, et al.
出版: (2020) -
Fermi-arc-induced vortex structure in Weyl beam shifts
由: Chattopadhyay, Udvas, et al.
出版: (2019)