Visibility constrained generative model for depth-based 3D facial pose tracking
In this paper, we propose a generative framework that unifies depth-based 3D facial pose tracking and face model adaptation on-the-fly, in the unconstrained scenarios with heavy occlusions and arbitrary facial expression variations. Specifically, we introduce a statistical 3D morphable model that fl...
Saved in:
Main Authors: | Sheng, Lu, Cai, Jianfei, Cham, Tat-Jen, Pavlovic, Vladimir, Ngan, King Ngi |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/138265 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A generative model for depth-based robust 3D facial pose tracking
由: Sheng, Lu, et al.
出版: (2020) -
Recovering facial reflectance and geometry from multi-view images
由: Song, Guoxian, et al.
出版: (2023) -
HUMAN POSE ESTIMATION FROM MONOCULAR VIDEOS
由: CHENG YU
出版: (2022) -
Weakly-supervised 3D hand pose estimation from monocular RGB images
由: Cai, Yujun, et al.
出版: (2020) -
Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks
由: Cai, Yujun, et al.
出版: (2019)