Arsenene nanoribbon edge-resolved strong magnetism

We proposed a mechanism to induce strong magnetism of up to 10.92 emu g-1 in hexagonal-phase arsenene nanoribbon (AsNR) from the perspective of edge quantum entrapment. Consistency between bond-order-length-strength correlation (BOLS) theory and density functional theory (DFT) calculations verified...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Sanmei, Zhang, Xi, Huang, Yongli, Sun, Chang Qing
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138290
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We proposed a mechanism to induce strong magnetism of up to 10.92 emu g-1 in hexagonal-phase arsenene nanoribbon (AsNR) from the perspective of edge quantum entrapment. Consistency between bond-order-length-strength correlation (BOLS) theory and density functional theory (DFT) calculations verified that: (i) the edge bond contraction of 9.54% deepened the edge potential well of AsNR, (ii) a net charge of 0.06 e- transferred from the inner region to the edge; and (iii) the edge quantum well polarized the unpaired electron and the net spin (antiferromagnetic or ferromagnetic depending on the width) is localized at the zigzag edge. The finding sheds a light on applications of AsNR in magnetic storage devices.