A generative model for depth-based robust 3D facial pose tracking

We consider the problem of depth-based robust 3D facial pose tracking under unconstrained scenarios with heavy occlusions and arbitrary facial expression variations. Unlike the previous depth-based discriminative or data-driven methods that require sophisticated training or manual intervention, we p...

Full description

Saved in:
Bibliographic Details
Main Authors: Sheng, Lu, Cai, Jianfei, Cham, Tat-Jen, Pavlovic, Vladimir, Ngan, King Ngi
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138494
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We consider the problem of depth-based robust 3D facial pose tracking under unconstrained scenarios with heavy occlusions and arbitrary facial expression variations. Unlike the previous depth-based discriminative or data-driven methods that require sophisticated training or manual intervention, we propose a generative framework that unifies pose tracking and face model adaptation on-the-fly. Particularly, we propose a statistical 3D face model that owns the flexibility to generate and predict the distribution and uncertainty underlying the face model. Moreover, unlike prior arts employing the ICP-based facial pose estimation, we propose a ray visibility constraint that regularizes the pose based on the face models visibility against the input point cloud, which augments the robustness against the occlusions. The experimental results on Biwi and ICT-3DHP datasets reveal that the proposed framework is effective and outperforms the state-of-the-art depth-based methods.