Development and validation of condition monitoring techniques for electrical machines
This research focuses on rotor retaining band faults in Permanent Magnet Synchronous Generator, specifically in aeronautical applications. Inconel718 are commonly used in the rotor retaining sleeves as it can withstand high mechanical force and high conductivity for heat exchange. The objective of t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138827 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-138827 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1388272023-07-07T18:31:45Z Development and validation of condition monitoring techniques for electrical machines Chan, Jian Long Soong Boon Hee School of Electrical and Electronic Engineering Rolls-Royce@NTU Corporate Lab Logesh Kumar EBHSOONG@ntu.edu.sg Engineering This research focuses on rotor retaining band faults in Permanent Magnet Synchronous Generator, specifically in aeronautical applications. Inconel718 are commonly used in the rotor retaining sleeves as it can withstand high mechanical force and high conductivity for heat exchange. The objective of the project is to investigate the effects of faults retaining band and analysis the effects based on simulation and data analysis method. This project involved conduction Finite Element Modelling to simulate produce the electromagnetic signature of a Permanent Magnet Synchronous Generator. Simulation was conducted on Ansys Maxwell. FEM simulations produce accurate results without the need of using physical equipment for testing. Results from FEM simulation are retrieved and imported to MATLAB for data processing. As results from FEM are in time-domain, often the effects of fault cannot be identified, especially for signals high harmonics order. Time-frequency transformations methods enable easy identification of fault harmonics as the resultant waveform can be easily compared to the baseline or healthy models. There are many methods used by other researchers when analysing electrical machines faults such as Fourier Transform based methods like Fast Fourier Transform, Short Time Fourier Transform, or other methods like Wavelet Transform and Hilbert Transform. Different methods utilised different function and hence the results will vary based on the method selected. In this project, Fast Fourier Transform and Wavelet Transform were used to analyse the results. Using Fourier Transform methods like Fast Fourier Transform and wavelet transform, time-domain signals and transformed int frequency-domain signal. Amplitude from the transformation was analysed in this project. Wavelet transform is another method used to analyse results from FEM simulations. From the simulation done in this project, we can see torque and current variations, especially in higher order harmonics, where a 2% variation can be seen in the fault models. And from wavelet transforms, we can see signal variations caused by the faults. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-13T04:21:48Z 2020-05-13T04:21:48Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/138827 en B3232-191 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering |
spellingShingle |
Engineering Chan, Jian Long Development and validation of condition monitoring techniques for electrical machines |
description |
This research focuses on rotor retaining band faults in Permanent Magnet Synchronous Generator, specifically in aeronautical applications. Inconel718 are commonly used in the rotor retaining sleeves as it can withstand high mechanical force and high conductivity for heat exchange. The objective of the project is to investigate the effects of faults retaining band and analysis the effects based on simulation and data analysis method. This project involved conduction Finite Element Modelling to simulate produce the electromagnetic signature of a Permanent Magnet Synchronous Generator. Simulation was conducted on Ansys Maxwell. FEM simulations produce accurate results without the need of using physical equipment for testing. Results from FEM simulation are retrieved and imported to MATLAB for data processing. As results from FEM are in time-domain, often the effects of fault cannot be identified, especially for signals high harmonics order. Time-frequency transformations methods enable easy identification of fault harmonics as the resultant waveform can be easily compared to the baseline or healthy models. There are many methods used by other researchers when analysing electrical machines faults such as Fourier Transform based methods like Fast Fourier Transform, Short Time Fourier Transform, or other methods like Wavelet Transform and Hilbert Transform. Different methods utilised different function and hence the results will vary based on the method selected. In this project, Fast Fourier Transform and Wavelet Transform were used to analyse the results. Using Fourier Transform methods like Fast Fourier Transform and wavelet transform, time-domain signals and transformed int frequency-domain signal. Amplitude from the transformation was analysed in this project. Wavelet transform is another method used to analyse results from FEM simulations. From the simulation done in this project, we can see torque and current variations, especially in higher order harmonics, where a 2% variation can be seen in the fault models. And from wavelet transforms, we can see signal variations caused by the faults. |
author2 |
Soong Boon Hee |
author_facet |
Soong Boon Hee Chan, Jian Long |
format |
Final Year Project |
author |
Chan, Jian Long |
author_sort |
Chan, Jian Long |
title |
Development and validation of condition monitoring techniques for electrical machines |
title_short |
Development and validation of condition monitoring techniques for electrical machines |
title_full |
Development and validation of condition monitoring techniques for electrical machines |
title_fullStr |
Development and validation of condition monitoring techniques for electrical machines |
title_full_unstemmed |
Development and validation of condition monitoring techniques for electrical machines |
title_sort |
development and validation of condition monitoring techniques for electrical machines |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/138827 |
_version_ |
1772826893954842624 |