Development of a machine-learning based object recognition system for quadrotors in urban environments
This project presents the implementation of suitable Machine Learning (ML) architecture(s) to achieve real-time object detection and classification in a quadrotor in an urban environment, with a reasonable level of accuracy. Here, a suitable architecture refers to one that is able to achieve real-ti...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138933 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This project presents the implementation of suitable Machine Learning (ML) architecture(s) to achieve real-time object detection and classification in a quadrotor in an urban environment, with a reasonable level of accuracy. Here, a suitable architecture refers to one that is able to achieve real-time performance, generally agreed to be 30 fps or higher among the community of ML practitioners. There is a compromise to be reached between accuracy and speed. Here, the constraint for speed is limited to the requirement of real-time performance. It is satisfactory to achieve levels of prediction accuracy comparable to current standards of reasonable accuracy, although the achievement of higher accuracy would be welcomed. |
---|