Completely positive semidefinite rank
An n× n matrix X is called completely positive semidefinite (cpsd) if there exist d× d Hermitian positive semidefinite matrices {Pi}i=1n (for some d≥ 1) such that Xij= Tr (PiPj) , for all i, j∈ { 1 , … , n}. The cpsd-rank of a cpsd matrix is the smallest d≥ 1 for which such a representation is possi...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139101 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |