Completely positive semidefinite rank
An n× n matrix X is called completely positive semidefinite (cpsd) if there exist d× d Hermitian positive semidefinite matrices {Pi}i=1n (for some d≥ 1) such that Xij= Tr (PiPj) , for all i, j∈ { 1 , … , n}. The cpsd-rank of a cpsd matrix is the smallest d≥ 1 for which such a representation is possi...
Saved in:
Main Authors: | Prakash, Anupam, Sikora, Jamie, Varvitsiotis, Antonios, Wei, Zhaohui |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/139101 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems
由: Pang, J.-S., et al.
出版: (2013) -
A parallel approximation algorithm for positive semidefinite programming
由: Jain, R., et al.
出版: (2013) -
An alternating direction method for solving convex nonlinear semidefinite programming problems
由: Zhang, S., et al.
出版: (2014) -
Matrix Completion Models with Fixed Basis Coefficients and Rank Regularized Problems with Hard Constraints
由: MIAO WEIMIN
出版: (2013) -
Semidefinite programming approaches for sensor network localization with noisy distance measurements
由: Biswas, P., et al.
出版: (2014)