Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media

Hierarchical metal nanostructures containing 1D nanobuilding blocks have stimulated great interest due to their abundant active sites for catalysis. Herein, hierarchical 4H/face-centered cubic (fcc) Ru nanotubes (NTs) are synthesized by a hard template-mediated method, in which 4H/fcc Au nanowires (...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Qipeng, Wang, An-Liang, Cheng, Hongfei, Gong, Yue, Yun, Qinbai, Yang, Nailiang, Li, Bing, Chen, Bo, Zhang, Qinghua, Zong, Yun, Gu, Lin, Zhang, Hua
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139232
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hierarchical metal nanostructures containing 1D nanobuilding blocks have stimulated great interest due to their abundant active sites for catalysis. Herein, hierarchical 4H/face-centered cubic (fcc) Ru nanotubes (NTs) are synthesized by a hard template-mediated method, in which 4H/fcc Au nanowires (NWs) serve as sacrificial templates which are then etched by copper ions (Cu2+ ) in dimethylformamide. The obtained hierarchical 4H/fcc Ru NTs contain ultrathin Ru shells (5-9 atomic layers) and tiny Ru nanorods with length of 4.2 ± 1.1 nm and diameter of 2.2 ± 0.5 nm vertically decorated on the surface of Ru shells. As an electrocatalyst for the hydrogen evolution reaction in alkaline media, the hierarchical 4H/fcc Ru NTs exhibit excellent electrocatalytic performance, which is better than 4H/fcc Au-Ru NWs, commercial Pt/C, Ru/C, and most of the reported electrocatalysts.