Understanding and comparing scalable Gaussian process regression for big data

As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Haitao, Cai, Jianfei, Ong, Yew-Soon, Wang, Yi
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139619
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-139619
record_format dspace
spelling sg-ntu-dr.10356-1396192020-07-14T01:04:21Z Understanding and comparing scalable Gaussian process regression for big data Liu, Haitao Cai, Jianfei Ong, Yew-Soon Wang, Yi School of Computer Science and Engineering Rolls-Royce@NTU Corporate Lab Data Science and Artificial Intelligence Research Center Engineering::Computer science and engineering Gaussian Process Big Data As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the era of big data. Hence, various scalable GPs have been developed in the literature in order to improve the scalability while retaining desirable prediction accuracy. This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness. The numerical experiments on two toy examples and five real-world datasets with up to 250K points offer the following findings. In terms of scalability, most of the scalable GPs own a time complexity that is linear to the training size. In terms of capability, the sparse approximations capture the long-term spatial correlations, the local aggregations capture the local patterns but suffer from over-fitting in some scenarios. In terms of controllability, we could improve the performance of sparse approximations by simply increasing the inducing size. But this is not the case for local aggregations. In terms of robustness, local aggregations are robust to various initializations of hyperparameters due to the local attention mechanism. Finally, we highlight that the proper hybrid of global and local scalable GPs may be a promising way to improve both the model capability and scalability for big data. NRF (Natl Research Foundation, S’pore) Accepted version 2020-05-20T08:25:15Z 2020-05-20T08:25:15Z 2018 Journal Article Liu, H., Cai, J., Ong, Y.-S., & Wang, Y. (2019). Understanding and comparing scalable gaussian process regression for big data. Knowledge-Based Systems, 164, 324-335. doi:10.1016/j.knosys.2018.11.002 0950-7051 https://hdl.handle.net/10356/139619 10.1016/j.knosys.2018.11.002 2-s2.0-85057030787 164 324 335 en Knowledge-Based Systems © 2018 Elsevier B.V. All rights reserved. This paper was published in Knowledge-Based Systems and is made available with permission of Elsevier B.V. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic Engineering::Computer science and engineering
Gaussian Process
Big Data
spellingShingle Engineering::Computer science and engineering
Gaussian Process
Big Data
Liu, Haitao
Cai, Jianfei
Ong, Yew-Soon
Wang, Yi
Understanding and comparing scalable Gaussian process regression for big data
description As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the era of big data. Hence, various scalable GPs have been developed in the literature in order to improve the scalability while retaining desirable prediction accuracy. This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness. The numerical experiments on two toy examples and five real-world datasets with up to 250K points offer the following findings. In terms of scalability, most of the scalable GPs own a time complexity that is linear to the training size. In terms of capability, the sparse approximations capture the long-term spatial correlations, the local aggregations capture the local patterns but suffer from over-fitting in some scenarios. In terms of controllability, we could improve the performance of sparse approximations by simply increasing the inducing size. But this is not the case for local aggregations. In terms of robustness, local aggregations are robust to various initializations of hyperparameters due to the local attention mechanism. Finally, we highlight that the proper hybrid of global and local scalable GPs may be a promising way to improve both the model capability and scalability for big data.
author2 School of Computer Science and Engineering
author_facet School of Computer Science and Engineering
Liu, Haitao
Cai, Jianfei
Ong, Yew-Soon
Wang, Yi
format Article
author Liu, Haitao
Cai, Jianfei
Ong, Yew-Soon
Wang, Yi
author_sort Liu, Haitao
title Understanding and comparing scalable Gaussian process regression for big data
title_short Understanding and comparing scalable Gaussian process regression for big data
title_full Understanding and comparing scalable Gaussian process regression for big data
title_fullStr Understanding and comparing scalable Gaussian process regression for big data
title_full_unstemmed Understanding and comparing scalable Gaussian process regression for big data
title_sort understanding and comparing scalable gaussian process regression for big data
publishDate 2020
url https://hdl.handle.net/10356/139619
_version_ 1681057535326420992