Understanding and comparing scalable Gaussian process regression for big data
As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the...
Saved in:
Main Authors: | Liu, Haitao, Cai, Jianfei, Ong, Yew-Soon, Wang, Yi |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/139619 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
When Gaussian process meets big data : a review of scalable GPs
由: Liu, Haitao, et al.
出版: (2021) -
Remarks on multi-output Gaussian process regression
由: Liu, Haitao, et al.
出版: (2020) -
Modulating scalable Gaussian processes for expressive statistical learning
由: Liu, Haitao, et al.
出版: (2022) -
Cope with diverse data structures in multi-fidelity modeling : a Gaussian process method
由: Liu, Haitao, et al.
出版: (2020) -
An empirical comparative analysis of clustering algorithms for big data applications
由: Delos Santos, Duke Danielle T.
出版: (2017)