Understanding and comparing scalable Gaussian process regression for big data

As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Haitao, Cai, Jianfei, Ong, Yew-Soon, Wang, Yi
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/139619
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English