Combining PSR theory with distributional reinforcement learning
This work focuses on using Distributional Reinforcement Learning (DRL) in a partially observable environment that is modelled via Predictive State Representation Theory (PSR). We aim to integrate the benefits of DRL and PSR to obtain a model-based reinforcement learning method that is capable of prov...
Saved in:
主要作者: | Zhou, Jingzhe |
---|---|
其他作者: | Zinovi Rabinovich |
格式: | Thesis-Master by Research |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/139946 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
World model with PSR components
由: Tng, Jun Wei
出版: (2022) -
Meta-learning for deep reinforcement learning
由: Poon, Jun Yaw
出版: (2021) -
Reinforcement learning for swarm systems
由: Arumugam, Ramaswamy
出版: (2022) -
Recommendation via reinforcement learning methods
由: Xu, He
出版: (2021) -
Adversarial robustness of deep reinforcement learning
由: Qu, Xinghua
出版: (2022)