Robotic assembly with robust force controllers
Active Force Control (AFC) is an important scheme for tackling high-precision robotic assembly. Classical force controllers are highly surface-dependent: the controller must be carefully tuned for each type of surface in contact, in order to avoid instabilities and to achieve a reasonable performanc...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141098 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Active Force Control (AFC) is an important scheme for tackling high-precision robotic assembly. Classical force controllers are highly surface-dependent: the controller must be carefully tuned for each type of surface in contact, in order to avoid instabilities and to achieve a reasonable performance level. In this paper, we build upon the recently-developed Convex Controller Synthesis (CCS) to enable high-precision assembly across a wide range of surface stiffnesses without any surface-dependent tuning. Specifically, we demonstrate peg-in-hole assembly with 100 micron clearance, initial position uncertainties up to 2 cm, and for four types of peg and hole materials – rubber, plastic, wood, aluminum – whose stiffnesses range
from 10 to 100 N/mm, using a single controller. |
---|