Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors
In modern detector technologies, antimony (Sb)-based photodetectors have shown great significances on the middle wavelength infrared (MWIR) spectra due to its various advantages in obtaining good detection performance. In this dissertation, the hetero InAsSb nip photodiode is designed as the basic M...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141150 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141150 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1411502023-07-04T16:35:28Z Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors Wang, Weilin ZHANG Dao Hua School of Electrical and Electronic Engineering EDHZHANG@ntu.edu.sg Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics In modern detector technologies, antimony (Sb)-based photodetectors have shown great significances on the middle wavelength infrared (MWIR) spectra due to its various advantages in obtaining good detection performance. In this dissertation, the hetero InAsSb nip photodiode is designed as the basic MWIR detector, where the large bandgap layers are introduced between absorption layer and contact layers to decrease noise current. To further increase the light absorption without sacrificing the response speed, four types of photon-trapping structures are designed and modeled in Finite Difference Time Domain (FDTD) simulation software. By simulating the reflection and absorption of devices w/o photon-trapping structure, significant reflection reduction is observed, and a relative absorption improvement of about 40% is reached for photon-trapping devices in the mid-wavelength region between 2 and 5 μm. The electric field distribution is also generated to demonstrate the lateral-mode effect on enhancing the absorption. Master of Science (Electronics) 2020-06-04T07:38:47Z 2020-06-04T07:38:47Z 2020 Thesis-Master by Coursework https://hdl.handle.net/10356/141150 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics |
spellingShingle |
Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Wang, Weilin Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
description |
In modern detector technologies, antimony (Sb)-based photodetectors have shown great significances on the middle wavelength infrared (MWIR) spectra due to its various advantages in obtaining good detection performance. In this dissertation, the hetero InAsSb nip photodiode is designed as the basic MWIR detector, where the large bandgap layers are introduced between absorption layer and contact layers to decrease noise current. To further increase the light absorption without sacrificing the response speed, four types of photon-trapping structures are designed and modeled in Finite Difference Time Domain (FDTD) simulation software. By simulating the reflection and absorption of devices w/o photon-trapping structure, significant reflection reduction is observed, and a relative absorption improvement of about 40% is reached for photon-trapping devices in the mid-wavelength region between 2 and 5 μm. The electric field distribution is also generated to demonstrate the lateral-mode effect on
enhancing the absorption. |
author2 |
ZHANG Dao Hua |
author_facet |
ZHANG Dao Hua Wang, Weilin |
format |
Thesis-Master by Coursework |
author |
Wang, Weilin |
author_sort |
Wang, Weilin |
title |
Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
title_short |
Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
title_full |
Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
title_fullStr |
Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
title_full_unstemmed |
Broadband absorption enhancement for InAsSb-based mid-infrared photodetectors |
title_sort |
broadband absorption enhancement for inassb-based mid-infrared photodetectors |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141150 |
_version_ |
1772828884986757120 |