Computational imaging and detection via deep learning
Data-driven signal and data modeling has received much attention recently, for its promising performance in image processing, computer vision, imaging, etc. Among many machine learning techniques, the popular deep learning has demonstrated promising performance in image-related applications. However...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141479 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141479 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1414792023-07-04T15:36:09Z Computational imaging and detection via deep learning Kong, Lingdong Wen Bihan School of Electrical and Electronic Engineering bihan.wen@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Engineering::Computer science and engineering::Computing methodologies::Pattern recognition Data-driven signal and data modeling has received much attention recently, for its promising performance in image processing, computer vision, imaging, etc. Among many machine learning techniques, the popular deep learning has demonstrated promising performance in image-related applications. However, it is still unclear whether it can be applied to benefit various computational imaging and vision applications, ranging from image reconstruction to analysis. This dissertation gives a comprehensive overview of the fundamentals of deep learning for object detection, including logistic regression, forward propagation, backward propagation, optimization techniques (e.g., dropout, momentum, and Adam), convolutional neural networks and computer vision applications, with a glace at some advanced topics (e.g., bounding box prediction, non-max suppression, and region proposal). Some popular deep learning models, such as the LeNet-5, AlexNet, VGG-16, ResNet, and Inception, are discussed in detail. Focusing on the object detection task, this dissertation investigates the ideas and procedures of the YOLO algorithm in particular and presents implement details of a detection problem with X-ray images. Specifically, the X-ray images are fed into deep neural networks to predict the classes and locations of five types of dangerous items. We present experimental results showing the effectiveness of the implemented algorithm for detecting objects from X-ray images, towards building a fully automated security inspection system using deep learning and computer vision techniques. Master of Science (Computer Control and Automation) 2020-06-08T11:58:02Z 2020-06-08T11:58:02Z 2020 Thesis-Master by Coursework https://hdl.handle.net/10356/141479 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Engineering::Computer science and engineering::Computing methodologies::Pattern recognition |
spellingShingle |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Engineering::Computer science and engineering::Computing methodologies::Pattern recognition Kong, Lingdong Computational imaging and detection via deep learning |
description |
Data-driven signal and data modeling has received much attention recently, for its promising performance in image processing, computer vision, imaging, etc. Among many machine learning techniques, the popular deep learning has demonstrated promising performance in image-related applications. However, it is still unclear whether it can be applied to benefit various computational imaging and vision applications, ranging from image reconstruction to analysis.
This dissertation gives a comprehensive overview of the fundamentals of deep learning for object detection, including logistic regression, forward propagation, backward propagation, optimization techniques (e.g., dropout, momentum, and Adam), convolutional neural networks and computer vision applications, with a glace at some advanced topics (e.g., bounding box prediction, non-max suppression, and region proposal). Some popular deep learning models, such as the LeNet-5, AlexNet, VGG-16, ResNet, and Inception, are discussed in detail.
Focusing on the object detection task, this dissertation investigates the ideas and procedures of the YOLO algorithm in particular and presents implement details of a detection problem with X-ray images. Specifically, the X-ray images are fed into deep neural networks to predict the classes and locations of five types of dangerous items. We present experimental results showing the effectiveness of the implemented algorithm for detecting objects from X-ray images, towards building a fully automated security inspection system using deep learning and computer vision techniques. |
author2 |
Wen Bihan |
author_facet |
Wen Bihan Kong, Lingdong |
format |
Thesis-Master by Coursework |
author |
Kong, Lingdong |
author_sort |
Kong, Lingdong |
title |
Computational imaging and detection via deep learning |
title_short |
Computational imaging and detection via deep learning |
title_full |
Computational imaging and detection via deep learning |
title_fullStr |
Computational imaging and detection via deep learning |
title_full_unstemmed |
Computational imaging and detection via deep learning |
title_sort |
computational imaging and detection via deep learning |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141479 |
_version_ |
1772828114225725440 |