Lane detection algorithm for autonomous driving using deep learning
In the decade of Industrial 4.0, autonomous driving has been a popular and controversial topic. Autonomous vehicle has become more advanced during recent years due to the increase in the amount of available technology and computational power. The application of deep learning algorithms to perform la...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141746 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141746 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1417462023-03-04T19:26:45Z Lane detection algorithm for autonomous driving using deep learning Siang, Yek Khan Lyu Chen School of Mechanical and Aerospace Engineering Robotics Research Centre lyuchen@ntu.edu.sg Engineering::Mechanical engineering::Mechatronics In the decade of Industrial 4.0, autonomous driving has been a popular and controversial topic. Autonomous vehicle has become more advanced during recent years due to the increase in the amount of available technology and computational power. The application of deep learning algorithms to perform lane detection for autonomous vehicle has been gaining positive feedbacks during these few years. However, the utilization of deep learning algorithms in lane detection systems has not been fully developed yet. Hence, this project aims to develop a low-cost robust lane detection system by deep learning which can deal with various road conditions and increase the accuracy of its detection results in real time. The deep learning algorithm (Semantic Segmentation: FCC-VGG16) was trained on a PC for detecting lanes. Data and images were collected from NTU MAE Robotics Research Centre. The trained model was installed on a Raspberry Pi which was used to control a donkey car. The donkey car was a prototype of autonomous vehicle and it was used to perform real-time lane detection. This final year project serves as a platform of work for future research on the feasibility of the usage of deep learning algorithm to build a lower-cost lane detection system with high robustness. Bachelor of Engineering (Mechanical Engineering) 2020-06-10T06:54:53Z 2020-06-10T06:54:53Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/141746 en A038 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering::Mechatronics |
spellingShingle |
Engineering::Mechanical engineering::Mechatronics Siang, Yek Khan Lane detection algorithm for autonomous driving using deep learning |
description |
In the decade of Industrial 4.0, autonomous driving has been a popular and controversial topic. Autonomous vehicle has become more advanced during recent years due to the increase in the amount of available technology and computational power. The application of deep learning algorithms to perform lane detection for autonomous vehicle has been gaining positive feedbacks during these few years. However, the utilization of deep learning algorithms in lane detection systems has not been fully developed yet. Hence, this project aims to develop a low-cost robust lane detection system by deep learning which can deal with various road conditions and increase the accuracy of its detection results in real time. The deep learning algorithm (Semantic Segmentation: FCC-VGG16) was trained on a PC for detecting lanes. Data and images were collected from NTU MAE Robotics Research Centre. The trained model was installed on a Raspberry Pi which was used to control a donkey car. The donkey car was a prototype of autonomous vehicle and it was used to perform real-time lane detection. This final year project serves as a platform of work for future research on the feasibility of the usage of deep learning algorithm to build a lower-cost lane detection system with high robustness. |
author2 |
Lyu Chen |
author_facet |
Lyu Chen Siang, Yek Khan |
format |
Final Year Project |
author |
Siang, Yek Khan |
author_sort |
Siang, Yek Khan |
title |
Lane detection algorithm for autonomous driving using deep learning |
title_short |
Lane detection algorithm for autonomous driving using deep learning |
title_full |
Lane detection algorithm for autonomous driving using deep learning |
title_fullStr |
Lane detection algorithm for autonomous driving using deep learning |
title_full_unstemmed |
Lane detection algorithm for autonomous driving using deep learning |
title_sort |
lane detection algorithm for autonomous driving using deep learning |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141746 |
_version_ |
1759856258892955648 |