Automatic localization of signal sources in photon emission images for integrated circuit analysis
Defects localization is a key step in failure analysis of highly scaled complementary oxide semiconductor integrated circuits (ICs). It gives prior information on VLSI circuits and allows the designers to improve their diagnostic. Light emission techniques are efficient to localize defects in modern...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141803 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141803 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1418032020-06-11T00:55:41Z Automatic localization of signal sources in photon emission images for integrated circuit analysis Boscaro, Anthony Jacquir, Sabir Chef, Samuel Sanchez, Kevin Perdu, Philippe Binczak, Stéphane Temasek Laboratories Science::Physics Photon Emission Microelectronics Reliability Defects localization is a key step in failure analysis of highly scaled complementary oxide semiconductor integrated circuits (ICs). It gives prior information on VLSI circuits and allows the designers to improve their diagnostic. Light emission techniques are efficient to localize defects in modern ICs. The identification of the emission spots is an essential step of the process because it shows where is located the electrical activity in the chip. Due to scaling, more and more emission nodes are located within the acquisition area so that large variations of emission intensity can exist. Thresholding techniques have been implemented, but they fail to provide an exhaustive localization. To overcome this problem, we introduce in this paper an automatic unsupervised process. It is based on a combination of median filtering, mathematical morphology and local maxima research. This new approach is evaluated and tested on 20 photon emission images (real and simulated). The final result is compared to an expert evaluation, and the detection quality is quantified. 2020-06-11T00:55:40Z 2020-06-11T00:55:40Z 2017 Journal Article Boscaro, A., Jacquir, S., Chef, S., Sanchez, K., Perdu, P., & Binczak, S. (2018). Automatic localization of signal sources in photon emission images for integrated circuit analysis. Signal, Image and Video Processing, 12(4), 775-782. doi:10.1007/s11760-017-1219-z 1863-1703 https://hdl.handle.net/10356/141803 10.1007/s11760-017-1219-z 2-s2.0-85038397621 4 12 775 782 en Signal, Image and Video Processing © 2017 Springer-Verlag London Ltd., part of Springer Nature. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Science::Physics Photon Emission Microelectronics Reliability |
spellingShingle |
Science::Physics Photon Emission Microelectronics Reliability Boscaro, Anthony Jacquir, Sabir Chef, Samuel Sanchez, Kevin Perdu, Philippe Binczak, Stéphane Automatic localization of signal sources in photon emission images for integrated circuit analysis |
description |
Defects localization is a key step in failure analysis of highly scaled complementary oxide semiconductor integrated circuits (ICs). It gives prior information on VLSI circuits and allows the designers to improve their diagnostic. Light emission techniques are efficient to localize defects in modern ICs. The identification of the emission spots is an essential step of the process because it shows where is located the electrical activity in the chip. Due to scaling, more and more emission nodes are located within the acquisition area so that large variations of emission intensity can exist. Thresholding techniques have been implemented, but they fail to provide an exhaustive localization. To overcome this problem, we introduce in this paper an automatic unsupervised process. It is based on a combination of median filtering, mathematical morphology and local maxima research. This new approach is evaluated and tested on 20 photon emission images (real and simulated). The final result is compared to an expert evaluation, and the detection quality is quantified. |
author2 |
Temasek Laboratories |
author_facet |
Temasek Laboratories Boscaro, Anthony Jacquir, Sabir Chef, Samuel Sanchez, Kevin Perdu, Philippe Binczak, Stéphane |
format |
Article |
author |
Boscaro, Anthony Jacquir, Sabir Chef, Samuel Sanchez, Kevin Perdu, Philippe Binczak, Stéphane |
author_sort |
Boscaro, Anthony |
title |
Automatic localization of signal sources in photon emission images for integrated circuit analysis |
title_short |
Automatic localization of signal sources in photon emission images for integrated circuit analysis |
title_full |
Automatic localization of signal sources in photon emission images for integrated circuit analysis |
title_fullStr |
Automatic localization of signal sources in photon emission images for integrated circuit analysis |
title_full_unstemmed |
Automatic localization of signal sources in photon emission images for integrated circuit analysis |
title_sort |
automatic localization of signal sources in photon emission images for integrated circuit analysis |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141803 |
_version_ |
1681057979698249728 |