Functional inequalities for marked point processes

In recent years, a number of functional inequalities have been derived for Poisson random measures, with a wide range of applications. In this paper, we prove that such inequalities can be extended to the setting of marked temporal point processes, under mild assumptions on their Papangelou conditio...

全面介紹

Saved in:
書目詳細資料
Main Authors: Flint, Ian, Privault, Nicolas, Torrisi, Giovanni Luca
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142214
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In recent years, a number of functional inequalities have been derived for Poisson random measures, with a wide range of applications. In this paper, we prove that such inequalities can be extended to the setting of marked temporal point processes, under mild assumptions on their Papangelou conditional intensity. First, we derive a Poincaré inequality. Second, we prove two transportation cost inequalities. The first one refers to functionals of marked point processes with a Papangelou conditional intensity and is new even in the setting of Poisson random measures. The second one refers to the law of marked temporal point processes with a Papangelou conditional intensity, and extends a related inequality which is known to hold on a general Poisson space. Finally, we provide a variational representation of the Laplace transform of functionals of marked point processes with a Papangelou conditional intensity. The proofs make use of an extension of the Clark-Ocone formula to marked temporal point processes. Our results are shown to apply to classes of renewal, nonlinear Hawkes and Cox point processes.