Nitration of tyrosine in the mucin glycoprotein of edible bird's nest changes its color from white to red
The edible bird's nest (EBN) of the swiftlet Aerodramus fuciphagus, a mucin glycoprotein, is usually white in color, but there also exist the more desirable red or "blood" EBN. The basis of the red color has been a puzzle for a long time. Here, we show that the nitration of the tyrosy...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142603 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The edible bird's nest (EBN) of the swiftlet Aerodramus fuciphagus, a mucin glycoprotein, is usually white in color, but there also exist the more desirable red or "blood" EBN. The basis of the red color has been a puzzle for a long time. Here, we show that the nitration of the tyrosyl residue to the 3-nitrotyrosyl (3-NTyr) residue in the glycoprotein is the cause of the red color. Evidence for the 3-NTyr residue comes from (a) the quantitative analysis of 3-NTyr in EBN by enzyme-linked immunosorbent assay, (b) the ultraviolet-visible absorption spectra of red EBN as a function of pH being similar to 3-nitrotyrosine (3-NT), (c) the change in the color of red EBN from yellow at low pH to red at high pH just like 3-NT, and (d) strong Raman nitro bands at 1330 cm-1 (symmetric -NO2 stretch) and 825 cm-1 (-NO2 scissoring bend) for red EBN. The high concentrations of nitrite and nitrate in red EBN are also explained. |
---|