Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay
The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142839 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-142839 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1428392020-07-03T07:46:55Z Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay Nguyen, Teron Xie, Meng Liu, Xiaodong Arunachalam, Nimal Rau, Andreas Lechner, Bernhard Busch, Fritz Wong, Yiik Diew School of Civil and Environmental Engineering Centre for Infrastructure Systems Engineering::Civil engineering Autonomous Public Transport Passenger Ride Comfort The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to 10% and 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort. NRF (Natl Research Foundation, S’pore) Published version 2020-07-03T07:46:55Z 2020-07-03T07:46:55Z 2019 Journal Article Nguyen, T., Xie, M., Liu, X., Arunachalam, N., Rau, A., Lechner, B., . . . Wong, Y. D. (2019). Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay. Sustainability, 11(19), 5237-. doi:10.3390/su11195237 2071-1050 https://hdl.handle.net/10356/142839 10.3390/su11195237 2-s2.0-85073590728 19 11 en Sustainability © 2019 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Civil engineering Autonomous Public Transport Passenger Ride Comfort |
spellingShingle |
Engineering::Civil engineering Autonomous Public Transport Passenger Ride Comfort Nguyen, Teron Xie, Meng Liu, Xiaodong Arunachalam, Nimal Rau, Andreas Lechner, Bernhard Busch, Fritz Wong, Yiik Diew Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
description |
The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to 10% and 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Nguyen, Teron Xie, Meng Liu, Xiaodong Arunachalam, Nimal Rau, Andreas Lechner, Bernhard Busch, Fritz Wong, Yiik Diew |
format |
Article |
author |
Nguyen, Teron Xie, Meng Liu, Xiaodong Arunachalam, Nimal Rau, Andreas Lechner, Bernhard Busch, Fritz Wong, Yiik Diew |
author_sort |
Nguyen, Teron |
title |
Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
title_short |
Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
title_full |
Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
title_fullStr |
Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
title_full_unstemmed |
Platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
title_sort |
platooning of autonomous public transport vehicles : the influence of ride comfort on travel delay |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/142839 |
_version_ |
1681056149024014336 |