Eisenstein series and convolution sums
We compute Fourier series expansions of weight 2 and weight 4 Eisenstein series at various cusps. Then we use results of these computations to give formulas for the convolution sums ∑a+pb=nσ(a)σ(b), ∑p1a+p2b=nσ(a)σ(b) and ∑a+p1p2b=nσ(a)σ(b) where p,p1,p2 are primes.
Saved in:
主要作者: | Aygin, Zafer Selcuk |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/143048 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
On Eisenstein series in M2k(Γ0(N)) and their applications
由: Aygin, Zafer Selcuk
出版: (2020) -
Quintic and septic Eisenstein series
由: Cooper, S., et al.
出版: (2014) -
Powers of theta functions
由: Chan, H.H., et al.
出版: (2014) -
Ramanujan's convolution sum twisted by Dirichlet characters
由: Aygin, Zafer Selcuk, et al.
出版: (2021) -
On the number of nonnegative sums for semi-partitions
由: Ku, Cheng Yeaw, et al.
出版: (2022)