Employee profiling via aspect-based sentiment and network for insider threats detection
Historically, the harm caused by insiders has proven to be one of the greatest concerns for any organization. As such, it has received considerable attention from both the industrial and research communities. Existing works mainly focused on modeling the employees’ normal biometric behavior (e.g., h...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/143916 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-143916 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1439162021-01-28T08:43:32Z Employee profiling via aspect-based sentiment and network for insider threats detection Soh, Charlie Yu, Sicheng Narayanan, Annamalai Duraisamy, Santhiya Chen, Lihui School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering Insider Threat Aspect-based Sentiment Analysis Historically, the harm caused by insiders has proven to be one of the greatest concerns for any organization. As such, it has received considerable attention from both the industrial and research communities. Existing works mainly focused on modeling the employees’ normal biometric behavior (e.g., human to device interaction pattern) to detect anomalous behavior which corresponds to the insider activity. However, it is unattainable to stop the insider at the final moment when the malicious act is being carried out. In this paper, we propose a novel framework which performs employee profiling based on aspect-based sentiments and social network information and examine its applicability for early detection of potential insider threats. On the contrary to the traditional sentiment analysis, aspect-based sentiment analysis provides more fine-grained information on the employee. Our framework employs a combination of deep learning techniques such as Gated Recurrent Unit (GRU) and skipgram to build temporal sentiment profiles for the employees. It then performs anomaly detection on the profiles and ranks the employees based on their respective anomaly score. Due to the absence of relevant benchmark dataset, we augmented the publicly available real-world Enron email corpus with an insider threat scenario to evaluate our framework. The evaluation results demonstrate that the augmentation is indeed reflected in the augmented employee’s anomaly ranking (i.e., from normal to abnormal) and her close associates are indeed placed closely to her when the profiles are visualized in the 2D space. The profiles obtained from our framework can also be used to complement any existing expert and intelligent systems with additional capabilities in handling textual information such as, integration with profiles obtained from biometric behavior to form a more comprehensive threat detection system. Accepted version 2020-10-01T02:59:10Z 2020-10-01T02:59:10Z 2019 Journal Article Soh, C., Yu, S., Narayanan, A., Duraisamy, S., & Chen, L. (2019). Employee profiling via aspect-based sentiment and network for insider threats detection. Expert Systems with Applications, 135, 351-361. doi:10.1016/j.eswa.2019.05.043 0957-4174 https://hdl.handle.net/10356/143916 10.1016/j.eswa.2019.05.043 135 351 361 en Expert Systems with Applications © 2019 Elsevier Ltd. All rights reserved. This paper was published in Expert Systems with Applications and is made available with permission of Elsevier Ltd. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Insider Threat Aspect-based Sentiment Analysis |
spellingShingle |
Engineering::Electrical and electronic engineering Insider Threat Aspect-based Sentiment Analysis Soh, Charlie Yu, Sicheng Narayanan, Annamalai Duraisamy, Santhiya Chen, Lihui Employee profiling via aspect-based sentiment and network for insider threats detection |
description |
Historically, the harm caused by insiders has proven to be one of the greatest concerns for any organization. As such, it has received considerable attention from both the industrial and research communities. Existing works mainly focused on modeling the employees’ normal biometric behavior (e.g., human to device interaction pattern) to detect anomalous behavior which corresponds to the insider activity. However, it is unattainable to stop the insider at the final moment when the malicious act is being carried out. In this paper, we propose a novel framework which performs employee profiling based on aspect-based sentiments and social network information and examine its applicability for early detection of potential insider threats. On the contrary to the traditional sentiment analysis, aspect-based sentiment analysis provides more fine-grained information on the employee. Our framework employs a combination of deep learning techniques such as Gated Recurrent Unit (GRU) and skipgram to build temporal sentiment profiles for the employees. It then performs anomaly detection on the profiles and ranks the employees based on their respective anomaly score. Due to the absence of relevant benchmark dataset, we augmented the publicly available real-world Enron email corpus with an insider threat scenario to evaluate our framework. The evaluation results demonstrate that the augmentation is indeed reflected in the augmented employee’s anomaly ranking (i.e., from normal to abnormal) and her close associates are indeed placed closely to her when the profiles are visualized in the 2D space. The profiles obtained from our framework can also be used to complement any existing expert and intelligent systems with additional capabilities in handling textual information such as, integration with profiles obtained from biometric behavior to form a more comprehensive threat detection system. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Soh, Charlie Yu, Sicheng Narayanan, Annamalai Duraisamy, Santhiya Chen, Lihui |
format |
Article |
author |
Soh, Charlie Yu, Sicheng Narayanan, Annamalai Duraisamy, Santhiya Chen, Lihui |
author_sort |
Soh, Charlie |
title |
Employee profiling via aspect-based sentiment and network for insider threats detection |
title_short |
Employee profiling via aspect-based sentiment and network for insider threats detection |
title_full |
Employee profiling via aspect-based sentiment and network for insider threats detection |
title_fullStr |
Employee profiling via aspect-based sentiment and network for insider threats detection |
title_full_unstemmed |
Employee profiling via aspect-based sentiment and network for insider threats detection |
title_sort |
employee profiling via aspect-based sentiment and network for insider threats detection |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/143916 |
_version_ |
1690658461407248384 |