Rational design of amphiphilic peptides and its effect on antifouling performance
Biofouling, the unwanted adhesion of organisms to surfaces, has a negative impact on energy, food, water, and health resources. One possible strategy to fight biofouling is to modify the surface using a peptide-based coating that will change the surface properties. We reveal the importance of ration...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/143975 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-143975 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1439752020-10-06T01:43:40Z Rational design of amphiphilic peptides and its effect on antifouling performance Gaw, Sheng Long Sakala, Gowripriya Nir, Sivan Saha, Abhijit Xu, Zhichuan J. Lee, Pooi See Reches, Meital School of Materials Science and Engineering Engineering::Materials Peptides and Proteins Monomers Biofouling, the unwanted adhesion of organisms to surfaces, has a negative impact on energy, food, water, and health resources. One possible strategy to fight biofouling is to modify the surface using a peptide-based coating that will change the surface properties. We reveal the importance of rational design and positioning of individual amino acids in an amphiphilic peptide sequence. By just manipulating the position of the amino acids within the peptide chain having the same chemical composition, we improved the antifouling performance of an amphiphilic peptide-based coating, Phe(4-F)-Lys-DOPA, by 30%. We have judiciously tailored the peptide configurations to achieve the best antifouling performance by (i) positioning the amino acid lysine adjacent to the DOPA moiety in the linear peptide chain for better adhesion, (ii) having a linear fluorinated N-terminal to improve the packing density of the film by straightening the peptide chain, and (iii) placing DOPA at the C-terminal. We have also compared the antifouling performances of amphiphilic, hydrophobic, hydrophilic, and alternately arranged peptides. Our results show a reduction of ∼80% in bacterial adhesion for an amphiphilic peptide-coated surface when compared to a bare titanium surface. This work provides important strategic design guidelines for future peptide-related materials that have effective antifouling properties. 2020-10-06T01:43:40Z 2020-10-06T01:43:40Z 2018 Journal Article Gaw, S. L., Sakala, G., Nir, S., Saha, A., Xu, Z. J., Lee, P. S., & Reches, M. (2018). Rational design of amphiphilic peptides and its effect on antifouling performance. Biomacromolecules, 19(9), 3620-3627. doi:10.1021/acs.biomac.8b00587 1526-4602 https://hdl.handle.net/10356/143975 10.1021/acs.biomac.8b00587 30075625 9 19 3620 3627 en Biomacromolecules © 2018 American Chemical Society. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Materials Peptides and Proteins Monomers |
spellingShingle |
Engineering::Materials Peptides and Proteins Monomers Gaw, Sheng Long Sakala, Gowripriya Nir, Sivan Saha, Abhijit Xu, Zhichuan J. Lee, Pooi See Reches, Meital Rational design of amphiphilic peptides and its effect on antifouling performance |
description |
Biofouling, the unwanted adhesion of organisms to surfaces, has a negative impact on energy, food, water, and health resources. One possible strategy to fight biofouling is to modify the surface using a peptide-based coating that will change the surface properties. We reveal the importance of rational design and positioning of individual amino acids in an amphiphilic peptide sequence. By just manipulating the position of the amino acids within the peptide chain having the same chemical composition, we improved the antifouling performance of an amphiphilic peptide-based coating, Phe(4-F)-Lys-DOPA, by 30%. We have judiciously tailored the peptide configurations to achieve the best antifouling performance by (i) positioning the amino acid lysine adjacent to the DOPA moiety in the linear peptide chain for better adhesion, (ii) having a linear fluorinated N-terminal to improve the packing density of the film by straightening the peptide chain, and (iii) placing DOPA at the C-terminal. We have also compared the antifouling performances of amphiphilic, hydrophobic, hydrophilic, and alternately arranged peptides. Our results show a reduction of ∼80% in bacterial adhesion for an amphiphilic peptide-coated surface when compared to a bare titanium surface. This work provides important strategic design guidelines for future peptide-related materials that have effective antifouling properties. |
author2 |
School of Materials Science and Engineering |
author_facet |
School of Materials Science and Engineering Gaw, Sheng Long Sakala, Gowripriya Nir, Sivan Saha, Abhijit Xu, Zhichuan J. Lee, Pooi See Reches, Meital |
format |
Article |
author |
Gaw, Sheng Long Sakala, Gowripriya Nir, Sivan Saha, Abhijit Xu, Zhichuan J. Lee, Pooi See Reches, Meital |
author_sort |
Gaw, Sheng Long |
title |
Rational design of amphiphilic peptides and its effect on antifouling performance |
title_short |
Rational design of amphiphilic peptides and its effect on antifouling performance |
title_full |
Rational design of amphiphilic peptides and its effect on antifouling performance |
title_fullStr |
Rational design of amphiphilic peptides and its effect on antifouling performance |
title_full_unstemmed |
Rational design of amphiphilic peptides and its effect on antifouling performance |
title_sort |
rational design of amphiphilic peptides and its effect on antifouling performance |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/143975 |
_version_ |
1681059032908955648 |