FedVision : an online visual object detection platform powered by federated learning
Visual object detection is a computer vision-based artificial intelligence (AI) technique which has many practical applications (e.g., fire hazard monitoring). However, due to privacy concerns and the high cost of transmitting video data, it is highly challenging to build object detection models on...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/144326 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-144326 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1443262020-10-28T07:24:54Z FedVision : an online visual object detection platform powered by federated learning Liu, Yang Huang, Anbu Luo, Yun Huang, He Liu, Youzhi Chen, Yuanyuan Feng, Lican Chen, Tianjian Yu, Han Yang, Qiang School of Computer Science and Engineering AAAI Conference on Artificial Intelligence Engineering::Computer science and engineering Visual Object Detection Artificial Intelligence Visual object detection is a computer vision-based artificial intelligence (AI) technique which has many practical applications (e.g., fire hazard monitoring). However, due to privacy concerns and the high cost of transmitting video data, it is highly challenging to build object detection models on centrally stored large training datasets following the current approach. Federated learning (FL) is a promising approach to resolve this challenge. Nevertheless, there currently lacks an easy to use tool to enable computer vision application developers who are not experts in federated learning to conveniently leverage this technology and apply it in their systems. In this paper, we report FedVision - a machine learning engineering platform to support the development of federated learning powered computer vision applications. The platform has been deployed through a collaboration between WeBank and Extreme Vision to help customers develop computer vision-based safety monitoring solutions in smart city applications. Over four months of usage, it has achieved significant efficiency improvement and cost reduction while removing the need to transmit sensitive data for three major corporate customers. To the best of our knowledge, this is the first real application of FL in computer vision-based tasks. AI Singapore National Research Foundation (NRF) Accepted version This research is supported by the Nanyang Assistant Professorship (NAP); the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-GC-2019-003); the National Research Foundation, Singapore, Prime Minister’s Office under its NRF Investigatorship Programme (NRFI Award No: NRF-NRFI05- 2019-0002); the Joint NTU-WeBank Research Centre on Fintech (NWJ-2019-007), Nanyang Technological University, Singapore; and the R&D group of Extreme Vision Ltd, Shenzhen, China. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore. 2020-10-28T07:24:54Z 2020-10-28T07:24:54Z 2020 Conference Paper Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y., ... Yang, Q. (2020). FedVision : an online visual object detection platform powered by federated learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13172-13179. doi:10.1609/aaai.v34i08.7021 https://hdl.handle.net/10356/144326 10.1609/aaai.v34i08.7021 34 13172 13179 en © 2020 Association for the Advancement of Artificial Intelligence (AAAI). All rights reserved. This paper was published in Proceedings of the AAAI Conference on Artificial Intelligence and is made available with permission of Association for the Advancement of Artificial Intelligence (AAAI). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Visual Object Detection Artificial Intelligence |
spellingShingle |
Engineering::Computer science and engineering Visual Object Detection Artificial Intelligence Liu, Yang Huang, Anbu Luo, Yun Huang, He Liu, Youzhi Chen, Yuanyuan Feng, Lican Chen, Tianjian Yu, Han Yang, Qiang FedVision : an online visual object detection platform powered by federated learning |
description |
Visual object detection is a computer vision-based artificial intelligence (AI) technique which has many practical applications (e.g., fire hazard monitoring). However, due to privacy concerns and the high cost of transmitting video data, it is highly challenging to build object detection models on centrally stored large training datasets following the current approach. Federated learning (FL) is a promising approach to resolve this challenge. Nevertheless, there currently lacks an easy to use tool to enable computer vision application developers who are not experts in federated learning to conveniently leverage this technology and apply it in their systems. In this paper, we report FedVision - a machine learning engineering platform to support the development of federated learning powered computer vision applications. The platform has been deployed through a collaboration between WeBank and Extreme Vision to help customers develop computer vision-based safety monitoring solutions in smart city applications. Over four months of usage, it has achieved significant efficiency improvement and cost reduction while removing the need to transmit sensitive data for three major corporate customers. To the best of our knowledge, this is the first real application of FL in computer vision-based tasks. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Liu, Yang Huang, Anbu Luo, Yun Huang, He Liu, Youzhi Chen, Yuanyuan Feng, Lican Chen, Tianjian Yu, Han Yang, Qiang |
format |
Conference or Workshop Item |
author |
Liu, Yang Huang, Anbu Luo, Yun Huang, He Liu, Youzhi Chen, Yuanyuan Feng, Lican Chen, Tianjian Yu, Han Yang, Qiang |
author_sort |
Liu, Yang |
title |
FedVision : an online visual object detection platform powered by federated learning |
title_short |
FedVision : an online visual object detection platform powered by federated learning |
title_full |
FedVision : an online visual object detection platform powered by federated learning |
title_fullStr |
FedVision : an online visual object detection platform powered by federated learning |
title_full_unstemmed |
FedVision : an online visual object detection platform powered by federated learning |
title_sort |
fedvision : an online visual object detection platform powered by federated learning |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/144326 |
_version_ |
1683493150543314944 |