Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction

Developing metal-free catalysts with high catalytic activity for oxygen evolution reaction (OER) is essentially important for energy and environment-related techniques. Compared with individual element doping, doping carbon materials with multiple heteroelements has more advantages for enhancing the...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Yasong, Yang, Nailiang, Yao, Huiying, Liu, Daobin, Song, Li, Zhu, Jia, Li, Shuzhou, Gu, Lin, Lin, Kaifeng, Wang, Dan
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144476
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Developing metal-free catalysts with high catalytic activity for oxygen evolution reaction (OER) is essentially important for energy and environment-related techniques. Compared with individual element doping, doping carbon materials with multiple heteroelements has more advantages for enhancing the OER performance. However, doped sites for the different atoms are highly uncontrollable under the reported methods, which hinder the deeper understanding on the relationship between structure and property, and also limit the enhancement of catalytic activity. Our latest research has reported a method to site-controlled introducing a new form of nitrogen atoms, i.e. sp-hybridized nitrogen (sp-N), into graphdiyne, showing its potential advantages in OER catalysis. Since the sites of sp-N atoms are defined in graphdiyne, and the doping sites for S atoms are well understood, the relative position between N and S can be further defined. It gives us a chance to understand deeply the mechanism in the N, S heteroelements doped metal-free catalyst. Experimental results present that the codoping of sp-N and S atoms brought an excellent OER performance with low overpotential and high current density owning to the effectively synergistic effect of the stereodefined heteroatoms.