Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction

Developing metal-free catalysts with high catalytic activity for oxygen evolution reaction (OER) is essentially important for energy and environment-related techniques. Compared with individual element doping, doping carbon materials with multiple heteroelements has more advantages for enhancing the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhao, Yasong, Yang, Nailiang, Yao, Huiying, Liu, Daobin, Song, Li, Zhu, Jia, Li, Shuzhou, Gu, Lin, Lin, Kaifeng, Wang, Dan
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/144476
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Developing metal-free catalysts with high catalytic activity for oxygen evolution reaction (OER) is essentially important for energy and environment-related techniques. Compared with individual element doping, doping carbon materials with multiple heteroelements has more advantages for enhancing the OER performance. However, doped sites for the different atoms are highly uncontrollable under the reported methods, which hinder the deeper understanding on the relationship between structure and property, and also limit the enhancement of catalytic activity. Our latest research has reported a method to site-controlled introducing a new form of nitrogen atoms, i.e. sp-hybridized nitrogen (sp-N), into graphdiyne, showing its potential advantages in OER catalysis. Since the sites of sp-N atoms are defined in graphdiyne, and the doping sites for S atoms are well understood, the relative position between N and S can be further defined. It gives us a chance to understand deeply the mechanism in the N, S heteroelements doped metal-free catalyst. Experimental results present that the codoping of sp-N and S atoms brought an excellent OER performance with low overpotential and high current density owning to the effectively synergistic effect of the stereodefined heteroatoms.