A dc-reactor-based solid-state fault current limiter for HVdc applications
Expansion of high-voltage dc (HVdc) systems to multi-terminal HVdc (MT-HVdc) systems/grids considerably increases the short-circuit levels. In order to protect the emerging MT-HVdc systems/grids against fault currents, proper dc fault current limiters (FCLs) must be developed. This paper proposes an...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/144517 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Expansion of high-voltage dc (HVdc) systems to multi-terminal HVdc (MT-HVdc) systems/grids considerably increases the short-circuit levels. In order to protect the emerging MT-HVdc systems/grids against fault currents, proper dc fault current limiters (FCLs) must be developed. This paper proposes an innovative high inductance solid-state dc-reactor-based FCL (HISS-DCRFCL) to be used in HVdc applications. In fact, during the HISS-DCRFCL normal operation, its inductance value is extremely low, and its value becomes considerably high during the fault period, which decreases the fault current amplitude. The proposed HISS-DCRFCL performance is analyzed by MATLAB/Simulink and the simulation results are verified and confirmed by laboratory experimental results using a scaled-down laboratory prototype setup. |
---|