Cyclic deformation and lattice strain distribution of high Nb containing TiAl alloy
Low cycle fatigue of lamellar TiAl with 8.5 at.-%Nb was studied with a total strain amplitude of 0.28% at three temperatures: room temperature, 750°C and 900°C. At room temperature, the material exhibited cyclic hardening and the fracture mode was mainly interlamellar. At 750°C and 900°C, the materi...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/144616 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Low cycle fatigue of lamellar TiAl with 8.5 at.-%Nb was studied with a total strain amplitude of 0.28% at three temperatures: room temperature, 750°C and 900°C. At room temperature, the material exhibited cyclic hardening and the fracture mode was mainly interlamellar. At 750°C and 900°C, the material showed cyclic softening and the fracture mode was translamellar. The lattice strain in γ phase was almost tensile and larger tensile lattice strain in γ phase seems detrimental. Besides, the opposite direction of {201}γ and {100}α2 lead to crack propagation along α2/γ interfaces. B2/βo phase always suffered compressive lattice strain in the tests. The destruction of lamellar microstructure was the reason for colony refinement at 750°C and 900°C. |
---|