EMD-based entropy features for micro-doppler mini-UAV classification

In this paper, we first investigate into six popular entropies extracted from a set of intrinsic mode functions (IMFs) as a feature pattern for radar-based mini-size unmanned aerial vehicles (mini-UAV) classification. The six entropies include Shannon entropy, spectral entropy, log energy entropy, a...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ma, Xinyue, Oh, Beom-Seok, Sun, Lei, Toh, Kar-Ann, Lin, Zhiping
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/144627
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper, we first investigate into six popular entropies extracted from a set of intrinsic mode functions (IMFs) as a feature pattern for radar-based mini-size unmanned aerial vehicles (mini-UAV) classification. The six entropies include Shannon entropy, spectral entropy, log energy entropy, approximate entropy, fuzzy entropy and permutation entropy. Via an empirical comparison among the six entropies on real measurement radar data, the first three are selected as the representative due to their high efficiency and accuracy. To enhance the classification accuracy, the three selected entropies are then extracted from eight different sets of IMFs obtained by signal downsampling, and then fused at feature level. The nonlinear support vector machine classifier is adopted to predict the class label of unseen test radar signals. Our empirical results on a set of real-world continuous wave radar data show that the proposed method outperforms the state-of-the-art method in terms of the mini-UAV classification accuracy.