Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production
Background: Soybean residue (okara) is an agricultural by‐product, which is rich in protein and fiber. This study evaluated a novel sequential process which combined fungal pretreatment (F) and twin screw extruder (E), to hydrolyze okara. The sequence of the pretreatment steps, and extruder at screw...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/144669 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-144669 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1446692023-12-29T06:49:44Z Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production Lee, Jaslyn Jie Lin Cooray, Sachindra Thilomini Mark, Rita Chen, Wei Ning School of Chemical and Biomedical Engineering Engineering::Chemical engineering Pretreatment Soybean Residue Background: Soybean residue (okara) is an agricultural by‐product, which is rich in protein and fiber. This study evaluated a novel sequential process which combined fungal pretreatment (F) and twin screw extruder (E), to hydrolyze okara. The sequence of the pretreatment steps, and extruder at screw speeds 200 rpm (200) or 600 rpm (600), were tested. Next, soluble nutrients were extracted to create Fokara, EFokara200, EFokara600, FEokara200 and FEokara600 okara media.Results: All the prepared okara media could support the growth and carotenoid production by the yeast Rhodosporidium toruloides. This suggested that okara proteins and polysaccharides were successfully hydrolyzed by extrusion and fungal pretreatment, into soluble nutrients. Rhodosporidium toruloides accumulated the highest biomass of 23.7 mg mL−1 dry cell weight (DCW), when grown on FEokara600 media. This was higher as compared to commercial YPG (yeast extract–peptone–glycerol) media (18.7 mg mL−1 DCW). However, R. toruloides accumulated the highest carotenoid production of 13.2 µg mL−1 when grown on EFokara200 media as the nutrient source. This was comparable to carotenoid production of 13.1 µg mL−1 when R. toruloides was grown on YPG media. Conclusion: Extrusion in combination with fungal pretreatment, is a low cost process, to hydrolyze and re‐use okara, for carotenoid production. Nanyang Technological University Accepted version The authors thank Nanyang Technological University (iFood Research grant) for the support. 2020-11-18T02:15:54Z 2020-11-18T02:15:54Z 2019 Journal Article Lee, J. J. L., Cooray, S. T., Mark, R., & Chen, W. N. (2019). Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production. Journal of the Science of Food and Agriculture, 99(5), 2646-2650. doi:10.1002/jsfa.9476 0022-5142 https://hdl.handle.net/10356/144669 10.1002/jsfa.9476 30411355 5 99 2646 2650 en Journal of the Science of Food and Agriculture © 2018 Society of Chemical Industry. All rights reserved. This paper was published by John Wiley & Sons in Journal of the Science of Food and Agriculture and is made available with permission of Society of Chemical Industry. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Chemical engineering Pretreatment Soybean Residue |
spellingShingle |
Engineering::Chemical engineering Pretreatment Soybean Residue Lee, Jaslyn Jie Lin Cooray, Sachindra Thilomini Mark, Rita Chen, Wei Ning Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
description |
Background: Soybean residue (okara) is an agricultural by‐product, which is rich in protein and fiber. This study evaluated a novel sequential process which combined fungal pretreatment (F) and twin screw extruder (E), to hydrolyze okara. The sequence of the pretreatment steps, and extruder at screw speeds 200 rpm (200) or 600 rpm (600), were tested. Next, soluble nutrients were extracted to create Fokara, EFokara200, EFokara600, FEokara200 and FEokara600 okara media.Results: All the prepared okara media could support the growth and carotenoid production by the yeast Rhodosporidium toruloides. This suggested that okara proteins and polysaccharides were successfully hydrolyzed by extrusion and fungal pretreatment, into soluble nutrients. Rhodosporidium toruloides accumulated the highest biomass of 23.7 mg mL−1 dry cell weight (DCW), when grown on FEokara600 media. This was higher as compared to commercial YPG (yeast extract–peptone–glycerol) media (18.7 mg mL−1 DCW). However, R. toruloides accumulated the highest carotenoid production of 13.2 µg mL−1 when grown on EFokara200 media as the nutrient source. This was comparable to carotenoid production of 13.1 µg mL−1 when R. toruloides was grown on YPG media. Conclusion: Extrusion in combination with fungal pretreatment, is a low cost process, to hydrolyze and re‐use okara, for carotenoid production. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Lee, Jaslyn Jie Lin Cooray, Sachindra Thilomini Mark, Rita Chen, Wei Ning |
format |
Article |
author |
Lee, Jaslyn Jie Lin Cooray, Sachindra Thilomini Mark, Rita Chen, Wei Ning |
author_sort |
Lee, Jaslyn Jie Lin |
title |
Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
title_short |
Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
title_full |
Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
title_fullStr |
Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
title_full_unstemmed |
Effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
title_sort |
effect of sequential twin screw extrusion and fungal pretreatment to release soluble nutrients from soybean residue for carotenoid production |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/144669 |
_version_ |
1787136608195051520 |