An efficient UAV hijacking detection method using onboard inertial measurement unit

With the fast growth of civil drones, their security problems meet significant challenges. A commercial drone may be hijacked by a GPS-spoofing attack for illegal activities, such as terrorist attacks. The target of this article is to develop a technique that only uses onboard gyroscopes to determin...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng, Zhiwei, Guan, Nan, Lv, Mingsong, Liu, Weichen, Deng, Qingxu, Liu, Xue, Yi, Wang
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144758
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With the fast growth of civil drones, their security problems meet significant challenges. A commercial drone may be hijacked by a GPS-spoofing attack for illegal activities, such as terrorist attacks. The target of this article is to develop a technique that only uses onboard gyroscopes to determine whether a drone has been hijacked. Ideally, GPS data and the angular velocities measured by gyroscopes can be used to estimate the acceleration of a drone, which can be further compared with the measurement of the accelerometer to detect whether a drone has been hijacked. However, the detection results may not always be accurate due to some calculation and measurement errors, especially when no hijacking occurs in curve trajectory situations. To overcome this, in this article, we propose a novel and simple method to detect hijacking only based on gyroscopes’ measurements and GPS data, without using any accelerometer in the detection procedure. The computational complexity of our method is very low, which is suitable to be implemented in the drones with micro-controllers. On the other hand, the proposed method does not rely on any accelerometer to detect attacks, which means it receives less information in the detection procedure and may reduce the results accuracy in some special situations. While the previous method can compensate for this flaw, the high detection results also can be guaranteed by using the above two methods. Experiments with a quad-rotor drone are conducted to show the effectiveness of the proposed method and the combination method.