Substrate-induced structural alterations of Mycobacterial mycothione reductase and critical residues involved
Redox homeostasis is a prerequisite for survival of the pathogen Mycobacterium tuberculosis (Mtb) which employs the low molecular weight thiol mycothiol (MSH). The Mycobacterial NADPH-dependent mycothione reductase (MtMtr), composed of an NADPH-, FAD-, and a dimerization-domain connected by linkers,...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145102 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Redox homeostasis is a prerequisite for survival of the pathogen Mycobacterium tuberculosis (Mtb) which employs the low molecular weight thiol mycothiol (MSH). The Mycobacterial NADPH-dependent mycothione reductase (MtMtr), composed of an NADPH-, FAD-, and a dimerization-domain connected by linkers, regulates the balance of oxidized-reduced MSH. Here, we demonstrate by small-angle X-ray scattering, that NADPH-binding alters the oligomeric state equilibrium of the protein with no significant overall structural change after MSH-binding. Mutation of critical residues in the linker regions of MtMtr eliminate partially or totally the NADPH-induced oligomerization effect with simultaneous effect on enzyme activity. The data provide insight into the MtMtr linker regions involved in the novel oligomerization equilibrium of the Mycobacterial enzyme. |
---|