Localization of an underwater robot for remote data collection

Underwater localization is a fundamental requirement in underwater robotics. Accurate and drift free pose estimates are required for navigation and operation in challenging underwater environments. Inaccuracies and errors in localization would result in the degradation of the data collected. In this...

全面介紹

Saved in:
書目詳細資料
主要作者: Wee, Mervyn Wei Jie
其他作者: Hu, Guoqiang
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/145445
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Underwater localization is a fundamental requirement in underwater robotics. Accurate and drift free pose estimates are required for navigation and operation in challenging underwater environments. Inaccuracies and errors in localization would result in the degradation of the data collected. In this work, a low-cost localization method using the inertial measurement unit (IMU) and an Extended Kalman Filter (EKF) algorithm is proposed for miniature underwater robots. The underwater robot used in this work is the open source Remotely Operated Vehicle (openROV). The proposed method uses data from the IMU of the openROV robot and inputs it into the EKF algorithm to create a map which shows the position and path of the openROV robot. The fundamental algorithmic principles behind the localization technique is described, and the algorithm is tested using a dataset and a simulation. Simulation results show that the designed algorithm can achieve accurate pose estimation.