Localization of an underwater robot for remote data collection

Underwater localization is a fundamental requirement in underwater robotics. Accurate and drift free pose estimates are required for navigation and operation in challenging underwater environments. Inaccuracies and errors in localization would result in the degradation of the data collected. In this...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wee, Mervyn Wei Jie
مؤلفون آخرون: Hu, Guoqiang
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/145445
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Underwater localization is a fundamental requirement in underwater robotics. Accurate and drift free pose estimates are required for navigation and operation in challenging underwater environments. Inaccuracies and errors in localization would result in the degradation of the data collected. In this work, a low-cost localization method using the inertial measurement unit (IMU) and an Extended Kalman Filter (EKF) algorithm is proposed for miniature underwater robots. The underwater robot used in this work is the open source Remotely Operated Vehicle (openROV). The proposed method uses data from the IMU of the openROV robot and inputs it into the EKF algorithm to create a map which shows the position and path of the openROV robot. The fundamental algorithmic principles behind the localization technique is described, and the algorithm is tested using a dataset and a simulation. Simulation results show that the designed algorithm can achieve accurate pose estimation.