Estimating human wrist stiffness during a tooling task

In this work, we propose a practical approach to estimate human joint stiffness during tooling tasks for the purpose of programming a robot by demonstration. More specifically, we estimate the stiffness along the wrist radial-ulnar deviation while a human operator performs flexion-extension movement...

全面介紹

Saved in:
書目詳細資料
Main Authors: Phan, Gia-Hoang, Hansen, Clint, Tommasino, Paolo, Budhota, Aamani, Mohan, Dhanya Menoth, Hussain, Asif, Burdet, Etienne, Campolo, Domenico
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/145685
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this work, we propose a practical approach to estimate human joint stiffness during tooling tasks for the purpose of programming a robot by demonstration. More specifically, we estimate the stiffness along the wrist radial-ulnar deviation while a human operator performs flexion-extension movements during a polishing task. The joint stiffness information allows to transfer skills from expert human operators to industrial robots. A typical hand-held, abrasive tool used by humans during finishing tasks was instrumented at the handle (through which both robots and humans are attached to the tool) to assess the 3D force/torque interactions between operator and tool during finishing task, as well as the 3D kinematics of the tool itself. Building upon stochastic methods for human arm impedance estimation, the novelty of our approach is that we rely on the natural variability taking place during the multi-passes task itself to estimate (neuro-)mechanical impedance during motion. Our apparatus (hand-held, finishing tool instrumented with motion capture and multi-axis force/torque sensors) and algorithms (for filtering and impedance estimation) were first tested on an impedance-controlled industrial robot carrying out the finishing task of interest, where the impedance could be pre-programmed. We were able to accurately estimate impedance in this case. The same apparatus and algorithms were then applied to the same task performed by a human operators. The stiffness values of the human operator, at different force level, correlated positively with the muscular activity, measured during the same task.