How to do quantile normalization correctly for gene expression data analyses
Quantile normalization is an important normalization technique commonly used in high-dimensional data analysis. However, it is susceptible to class-effect proportion effects (the proportion of class-correlated variables in a dataset) and batch effects (the presence of potentially confounding technic...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/146067 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Quantile normalization is an important normalization technique commonly used in high-dimensional data analysis. However, it is susceptible to class-effect proportion effects (the proportion of class-correlated variables in a dataset) and batch effects (the presence of potentially confounding technical variation) when applied blindly on whole data sets, resulting in higher false-positive and false-negative rates. We evaluate five strategies for performing quantile normalization, and demonstrate that good performance in terms of batch-effect correction and statistical feature selection can be readily achieved by first splitting data by sample class-labels before performing quantile normalization independently on each split (“Class-specific”). Via simulations with both real and simulated batch effects, we demonstrate that the “Class-specific” strategy (and others relying on similar principles) readily outperform whole-data quantile normalization, and is robust-preserving useful signals even during the combined analysis of separately-normalized datasets. Quantile normalization is a commonly used procedure. But when carelessly applied on whole datasets without first considering class-effect proportion and batch effects, can result in poor performance. If quantile normalization must be used, then we recommend using the “Class-specific” strategy. |
---|