Attention based graph Bi-LSTM networks for traffic forecasting

Traffic forecasting is of great importance to vehicle routing, traffic signal control and urban planning. However, traffic forecasting task is challenging due to several factors, such as complex spatial topological structure and dynamic changing of traffic status. Most existing methods have limited...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Han, Yang, Huan, Wang, Yu, Wang, Danwei, Su, Rong
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146155
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Traffic forecasting is of great importance to vehicle routing, traffic signal control and urban planning. However, traffic forecasting task is challenging due to several factors, such as complex spatial topological structure and dynamic changing of traffic status. Most existing methods have limited ability to capture both spatial and temporal dependence of traffic data. In this paper, we propose a novel end-to-end deep learning model, Attention based Graph Bi-LSTM networks (AGBN) to perform the traffic forecasting task. It uses graph convolutional network (GCN) to extract spatial features and bidirectional long short-term memory networks (Bi-LSTM) to capture the temporal dependence. The attention mechanism is used to select relevant features at all time steps. Experiments show that our model could extract both spatial and temporal dependence well and outperforms other baselines on real-world traffic datasets.