Manifold regularized stochastic block model
Stochastic block models (SBMs) play essential roles in network analysis, especially in those related to unsupervised learning (clustering). Many SBM-based approaches have been proposed to uncover network clusters, by means of maximizing the block-wise posterior probability that generates edges bridg...
Saved in:
Main Authors: | He, Tiantian, Bai, Lu, Ong, Yew-Soon |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/147803 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Multi-source propagation aware network clustering
由: He, Tiantian, et al.
出版: (2021) -
Multi-task gradient descent for multi-task learning
由: Bai, Lu, et al.
出版: (2021) -
Precise object detection using adversarially augmented local/global feature fusion
由: Han, Xiaobing, et al.
出版: (2020) -
Subdomain adaptation with manifolds discrepancy alignment
由: Wei, Pengfei, et al.
出版: (2021) -
Extreme learning machine with sparse connections
由: Bai, Zuo
出版: (2015)