Model-based RL in ATARI games

This report describes the implementation of the world model reinforcement learning algorithm to gauge its performance against traditional reinforcement learning algorithms like deep Q-learning. The algorithm will be tested in different Atari Environments, some of which pose great difficultly due to...

Full description

Saved in:
Bibliographic Details
Main Author: Akarapu, Bharadwaj
Other Authors: Zinovi Rabinovich
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148080
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This report describes the implementation of the world model reinforcement learning algorithm to gauge its performance against traditional reinforcement learning algorithms like deep Q-learning. The algorithm will be tested in different Atari Environments, some of which pose great difficultly due to the smaller signals in the observation frames. Specific modifications were required to tailor the world model for each of the different environments.