A robust and interpretable feature selection pipeline
A feature selection pipeline that removes redundant and irrelevant features without resulting in a significant drop in performance is investigated in this work. The novel pipeline frameworks consider the combined effect of redundancy minimisation through Principal Feature Analysis (PFA) algorithms...
Saved in:
主要作者: | Krishnan, Nithya |
---|---|
其他作者: | A S Madhukumar |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/148109 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Towards interpretable & robust face recognition
由: Pattra, Surya Paryanta
出版: (2022) -
Towards interpretable & robust occluded facial recognition
由: Rachita, Agrawal
出版: (2023) -
Interpretable and robust AI in electroencephalogram systems
由: Zhou, Xinliang
出版: (2025) -
Designing a sustainable and robust pipeline for integrating tensorflow motion capture models into unity
由: Chua, Zeta Hui Shi
出版: (2023) -
Feature-based robust techniques for speech recognition
由: Nguyen, Duc Hoang Ha
出版: (2017)