Poisson discretizations of Wiener functionals and Malliavin operators with Wasserstein estimates
This article proposes a global, chaos-based procedure for the discretization of functionals of Brownian motion into functionals of a Poisson process with intensity λ>0. Under this discretization we study the weak convergence, as the intensity of the underlying Poisson process goes to infinity, of...
Saved in:
Main Authors: | Privault, Nicolas, Yam, Phillip S. C., Zhang, Zheng |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/148584 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Third cumulant stein approximation for Poisson stochastic integrals
由: Privault, Nicolas
出版: (2021) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
由: Privault, Nicolas
出版: (2015) -
Malliavin calculus for Lévy processes with applications to finance
由: Di Nunno, Giulia, et al.
出版: (2017) -
Characterization of stochastic equilibrium controls by the Malliavin calculus
由: Nguwi, Jiang Yu, et al.
出版: (2022) -
Cardinality estimation for random stopping sets based on Poisson point processes
由: Privault, Nicolas
出版: (2022)