Pruning deep neural networks for encoding and decoding the human connectome

The main focus of this project is to identify biomarkers of neurodegenerative disorders such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) in functional Magnetic Resonance Imaging (fMRI) scans. Deep learning models can be used to encode the human functional connectome and classify between...

Full description

Saved in:
Bibliographic Details
Main Author: Tang, Sean
Other Authors: Jagath C Rajapakse
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/149048
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The main focus of this project is to identify biomarkers of neurodegenerative disorders such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) in functional Magnetic Resonance Imaging (fMRI) scans. Deep learning models can be used to encode the human functional connectome and classify between healthy subjects and patients with diseases, followed by a decoding process to identify salient features used in the classification. However, fMRI datasets have much more features than data samples, causing models to overfit easily. Existing solutions involving pruning the neural network range from recursive feature elimination which is too slow to a one-shot pruning approach which prunes too harshly. Thus, this project will explore the viability of improved pruning methodologies to attain an improved, sparser architecture. This project also goes beyond existing work on pruning multi-layer perceptron (MLP) to propose pruning approach for convolutional neural network (CNN), which can take in dynamic functional connectivity (dFC) matrices, as well as graph convolutional network (GCN), which is a better fit for encoding functional connectomes. The pruning algorithms proposed can also generalise to non-neuroimaging datasets, which is demonstrated by applying them to datasets like MNIST, CIFAR-10 and the CORA dataset, suggesting applications beyond the initial scope defined by this project.