Granular fermentation enables high rate caproic acid production from solid-free thin stillage
Microbial chain elongation has been investigated as a process to upgrade diluted ethanol to more valuable medium chain carboxylic acids. However, its application in the valorization of (agro)industrial wastes or sidestreams has been hampered by low volumetric production rates. Microbial granulation,...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/150629 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-150629 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1506292021-06-14T06:51:49Z Granular fermentation enables high rate caproic acid production from solid-free thin stillage Carvajal-Arroyo, José M. Candry, Pieter Andersen, Stephen J. Props, Ruben Seviour, Thomas Ganigué, Ramon Rabaey, Korneel Singapore Centre for Environmental Life Sciences and Engineering Engineering::Environmental engineering Upgrading Dilute Ethanol Chain Carboxylic-acids Microbial chain elongation has been investigated as a process to upgrade diluted ethanol to more valuable medium chain carboxylic acids. However, its application in the valorization of (agro)industrial wastes or sidestreams has been hampered by low volumetric production rates. Microbial granulation, widely applied in wastewater treatment, has been rarely explored in a context of bioproduction. Here we show how fermentative granulation can be applied to the valorization of solid-free thin stillage, through a high-rate chain elongation process for the production of MCCA without the addition of exogenous electron donating intermediates. Using a fermentative expanded granular sludge bed reactor, caproic acid was produced at sustained rates of 12.3 g C6 L⁻¹ d⁻¹ (625 mmol C L⁻¹ d⁻¹ or 27.2 g C6-COD L⁻¹ d⁻¹) at pH 5.5, and concentrations of up to 6.8 g C6 L⁻¹. During a stable period (days 181-217) the 27.2% of the influent fermentable COD was converted to caproic acid. During the same period caproic acid accounted for 44.4% of the produced carboxylic acid-C, with butyric and acetic acids generated as main side-products, but a maximum specificity of 58.4% had been previously observed. Lactic acid served as the electron donating intermediate, to the extent that no net ethanol was consumed. The granules developed into disc-shaped aggregates and were enriched in chain elongating Ruminococaceae, while the planktonic biomass was dominated by lactic acid bacteria. The characterization of the extracellular polymeric substances (EPS) showed that polymers of high molecular weight (>10⁶ Da) were more abundant in the granules than in the planktonic biomass. R. G. gratefully acknowledges support from BOF fellowship (BOF15/PDO/068). P. C. is supported by the UGent Special Research Fund (BOF15/DOC/286). K. R. acknowledges support from the projects H2020—EU.3.2.6- BBI-JTI-745828, and BOF19/GOA/026-2019 01G02619. 2021-06-14T06:51:49Z 2021-06-14T06:51:49Z 2019 Journal Article Carvajal-Arroyo, J. M., Candry, P., Andersen, S. J., Props, R., Seviour, T., Ganigué, R. & Rabaey, K. (2019). Granular fermentation enables high rate caproic acid production from solid-free thin stillage. Green Chemistry, 21(6), 1330-1339. https://dx.doi.org/10.1039/C8GC03648A 1463-9262 https://hdl.handle.net/10356/150629 10.1039/C8GC03648A 6 21 1330 1339 en Green Chemistry © 2019 The Royal Society of Chemistry. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Environmental engineering Upgrading Dilute Ethanol Chain Carboxylic-acids |
spellingShingle |
Engineering::Environmental engineering Upgrading Dilute Ethanol Chain Carboxylic-acids Carvajal-Arroyo, José M. Candry, Pieter Andersen, Stephen J. Props, Ruben Seviour, Thomas Ganigué, Ramon Rabaey, Korneel Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
description |
Microbial chain elongation has been investigated as a process to upgrade diluted ethanol to more valuable medium chain carboxylic acids. However, its application in the valorization of (agro)industrial wastes or sidestreams has been hampered by low volumetric production rates. Microbial granulation, widely applied in wastewater treatment, has been rarely explored in a context of bioproduction. Here we show how fermentative granulation can be applied to the valorization of solid-free thin stillage, through a high-rate chain elongation process for the production of MCCA without the addition of exogenous electron donating intermediates. Using a fermentative expanded granular sludge bed reactor, caproic acid was produced at sustained rates of 12.3 g C6 L⁻¹ d⁻¹ (625 mmol C L⁻¹ d⁻¹ or 27.2 g C6-COD L⁻¹ d⁻¹) at pH 5.5, and concentrations of up to 6.8 g C6 L⁻¹. During a stable period (days 181-217) the 27.2% of the influent fermentable COD was converted to caproic acid. During the same period caproic acid accounted for 44.4% of the produced carboxylic acid-C, with butyric and acetic acids generated as main side-products, but a maximum specificity of 58.4% had been previously observed. Lactic acid served as the electron donating intermediate, to the extent that no net ethanol was consumed. The granules developed into disc-shaped aggregates and were enriched in chain elongating Ruminococaceae, while the planktonic biomass was dominated by lactic acid bacteria. The characterization of the extracellular polymeric substances (EPS) showed that polymers of high molecular weight (>10⁶ Da) were more abundant in the granules than in the planktonic biomass. |
author2 |
Singapore Centre for Environmental Life Sciences and Engineering |
author_facet |
Singapore Centre for Environmental Life Sciences and Engineering Carvajal-Arroyo, José M. Candry, Pieter Andersen, Stephen J. Props, Ruben Seviour, Thomas Ganigué, Ramon Rabaey, Korneel |
format |
Article |
author |
Carvajal-Arroyo, José M. Candry, Pieter Andersen, Stephen J. Props, Ruben Seviour, Thomas Ganigué, Ramon Rabaey, Korneel |
author_sort |
Carvajal-Arroyo, José M. |
title |
Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
title_short |
Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
title_full |
Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
title_fullStr |
Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
title_full_unstemmed |
Granular fermentation enables high rate caproic acid production from solid-free thin stillage |
title_sort |
granular fermentation enables high rate caproic acid production from solid-free thin stillage |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/150629 |
_version_ |
1703971201233190912 |